
SymLM: Predicting Function Names in Stripped Binaries via
Context-Sensitive Execution-Aware Code Embeddings

Xin Jin
The Ohio State University

jin.967@osu.edu

Kexin Pei
Columbia University
kpei@cs.columbia.edu

Jun Yeon Won
The Ohio State University

won.126@osu.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

ABSTRACT

Predicting function names in stripped binaries is an extremely use-
ful but challenging task, as it requires summarizing the execution
behavior and semantics of the function in human languages. Re-
cently, there has been significant progress in this direction with
machine learning. However, existing approaches fail to model the
exhaustive function behavior and thus suffer from the poor gener-
alizability to unseen binaries. To advance the state of the art, we
present a function Symbol name prediction and binary Language
Modeling (SymLM) framework, with a novel neural architecture that
learns the comprehensive function semantics by jointly modeling
the execution behavior of the calling context and instructions via a
novel fusing encoder. We have evaluated SymLM with 1,431,169 bi-
nary functions from 27 popular open source projects, compiled with
4 optimizations (O0-O3) for 4 different architectures (i.e., x64, x86,
ARM, and MIPS) and 4 obfuscations. SymLM outperforms the state-
of-the-art function name prediction tools by up to 15.4%, 59.6%,
and 35.0% in precision, recall, and F1 score, with significantly bet-
ter generalizability and obfuscation resistance. Ablation studies
also show that our design choices (e.g., fusing components of the
calling context and execution behavior) substantially boost the per-
formance of function name prediction. Finally, our case studies
further demonstrate the practical use cases of SymLM in analyzing
firmware images.

CCS CONCEPTS

•Computingmethodologies→Machine learning approaches;
• Security and privacy→ Software reverse engineering.

KEYWORDS

Function name prediction; binary reverse engineering; transfer
learning; calling context; execution behavior
ACM Reference Format:

Xin Jin, Kexin Pei, Jun YeonWon, and Zhiqiang Lin. 2022. SymLM: Predicting
Function Names in Stripped Binaries via Context-Sensitive Execution-Aware

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00
https://doi.org/10.1145/3548606.3560612

Code Embeddings. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’22), November 7–11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3548606.3560612

1 INTRODUCTION

Predicting function names in stripped binaries is extremely useful
for many security applications such as malware analysis [84, 92],
vulnerability identification [63, 85], binary code hardening [23, 74],
binary code reuse [20, 95], program comprehension [26, 86], and
decompilation [53, 65]. As a concrete example, security companies
such as Mandiant [50] have invested significant resources in
developing various reverse engineering tools for symbol recovery,
function annotation, binary code matching, and binary code attribu-
tion, in order to help human analysts to analyze the functionalities
of the malware and even trace back their origins more efficiently.

Unfortunately, constructing meaningful function names is an
extremely challenging task. In particular, function names often pro-
vide a high-level summary of the approximate behavior of functions,
as shown in Figure 1. Predicting the function name thus relies on un-
derstanding of what operations the function performs and the capa-
bility of combining and mapping them to a few keywords in human
languages. However, various compiler idioms, optimizations or ob-
fuscation passes, application binary interfaces (ABIs) across differ-
ent operating systems, and hardware specifications of diverse archi-
tectures introduce an extremely diverse binary code representations
even for the code with the same semantics. Reasoning about their
execution behavior is thus nontrivial and prohibitively expensive.
Moreover, the noisy nature of human language even exacerbates the
problem. For example, studies have shown that different developers
often name the same functions differently (e.g., with only 6.9% prob-
ability choosing the same name) [35] and with different choice of
vocabularies, resulting in out-of-vocabulary (OOV) problems [54].

Interestingly, recent efforts (e.g., [38, 41, 50, 57]) have shown a
promising direction by training Machine Learning (ML) models
from a large set of binary function name mappings and automati-
cally learning useful patterns in the binary code for function name
prediction. However, their results on even simple binaries (e.g., with-
out compiler optimizations) are suboptimal (around 40% from the
state of the art), let alone the binaries withmore aggressive optimiza-
tions or obfuscations that often break the spurious patterns learned
from these models. For example, as shown in Figure 1, the function
name analogRead should be attributed to the execution behavior
of the body within the else block (line 4-12) instead of any other

https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

1 uint32_t analogRead(uint32_t ulPin){
2 ...
3 if (pin == NC) uVar3 = 0;
4 else {
5 uVar2 = adc_read_value(pin);
6 uVar3 = (uint32_t)uVar2;
7 if (uVar4 != 0xc) {
8 if ((uint) uVar4 < 0xc)
9 return (uint)(uVar2 >> (0xcU - uVar4 & 0xff));
10 return uVar3 << (uVar4 - 0xcU & 0xff);
11 }
12 }
13 return uVar3;
14 }

Figure 1: A piece of decompiled code for function analogRead
from the Gateway firmware image [2]. Understanding the

behavior of the callee at line 5 is critical to predict the func-

tion name at line 1.

patterns. Yet, none of the existing approaches attempts to expose
the dynamic behavior of the function to the ML model for function
name predication. Without learning how binary program behaves
dynamically, the ML models cannot reason precisely about function
behavior and relate them to function name, while instead resort to
other patterns, which might not persist when the code is compiled
on different architectures or with different compiler optimizations.

On the other hand, there are also a number of attempts (e.g., [75,
77, 90, 91]) to learn execution-informed program representations
for various downstream program analysis tasks, e.g., type infer-
ence, program repair, etc. With the training dataset augmented by
execution traces, the ML models have direct access to observe how
code would behave during runtime, and tend to more likely learn
program semantics and map them to target labels. Unfortunately,
the key limitation of these works is that they are completely agnostic
to the calling context, i.e., none of themmodels program behavior be-
yond a single function. For example, Trex [77] skips function calls
during tracing, and Stateformer [75] only considers the return
value of callees. Failing to consider the calling context significantly
restricts the actual functions’ behavior accessible to the ML models.
Consider the function shown in Figure 1, where the function name
analogRead at line 1 is highly related to the behavior of its callee
abc_read_value (line 5). Our studies in §5.5 suggest that existing
ML models [77] fail to predict this function name meaningfully,
and overall they are 7.9% less accurate compared to our approach
that considers the calling context.
Our Approach. In this paper, we present SymLM, a novel neural
architecture to learn context-sensitive function semantics for
function name prediction. Based on the execution-aware pretrained
models [77], SymLM learns the comprehensive function semantics
by jointly modeling the execution behavior of the calling context
and function instructions via a novel fusing encoder module. To
address the ambiguity of natural language in function names,
i.e., synonyms and out-of-vocabulary (OOV) words, we build
CodeWordNet encapsulating the domain-specific distributed
representations of function name tokens to measure the semantic
distance between the predicted and ground-truth names.

Our extensive experiments demonstrate that SymLM is accurate:
achieving 0.634 precision, 0.677 recall, and 0.655 F1 score across
various architectures and optimizations. SymLM outperforms all
state-of-the-art function name prediction works by up to 35.0% in

F1 score. By learning context-sensitive function semantics, we show
that SymLM is more generalizable and robust than existing works,
outperforming the state-of-the-art by 295.5% in F1 score when eval-
uated against unseen binary functions. Additionally, the ablation
studies further demonstrate the effectiveness of SymLM’s design
in incorporating calling context. For example, the semantics fusing
encoder can improve the performance of SymLM by up to 36.2% in
F1 score. We also apply SymLM on real-world IoT firmware and it
successfully predicts the function names in the firmware images.

Contributions. Our paper makes the following contributions:

• We design a novel neural architecture, SymLM, to learn the
comprehensive function semantics preserved in the execution
behavior of the calling context and function instructions.

• We build the CodeWordNet module to measure semantic dis-
tance of function names with the domain-specific distributed
representations and address OOV problems by preprocessing.

• We advance the state-of-the-art of function name prediction by
outperforming existing works and show the generalizability,
obfuscation resistance, component effectiveness, and the prac-
tical use case of SymLM. Our code and dataset are released at
https://github.com/OSUSecLab/SymLM.

2 BACKGROUND AND MOTIVATION

2.1 Problem Definition

We define the semantics of a binary function F as E, which is man-
ifested by the execution behavior of a sequence of its instructions
I and the calling context C. The calling context C denotes the set
of functions that calls F (callers) C+ and functions that F calls
(callees) C− . That is, C = {C+, C−}.

We introduce an embedding space 𝐸 (consisting of multi-
dimensional numerical vectors) to represent E. Let 𝐸E , 𝐸I , and
𝐸C denote the vector representations (in 𝐸) of E, I, and C, respec-
tively. We define the function semantics E as the composition of
the semantics of function instructions I and the calling context C:

𝐸E = 𝜙 (𝐸C, 𝐸I) (1)

where 𝜙 (·) is a composition function.
Given 𝐸E , we define the function name prediction task as a

multi-class multi-label classification problem. In particular, we aim
to learn a mapping function Γ(·) that maps 𝐸E to the function name
𝑊 , which consists of a set of words𝑊 = {𝑤1,𝑤2 ...,𝑤𝑛}, where𝑊
is a subset of the function name vocabularyV (𝑊 ⊆ V):

𝑊 = Γ(𝐸E) (2)

HereV consists mostly of English words and also other commonly
developer-chosen terms such as abbreviations, types (e.g., int,
float), numbers, and even misspellings.

2.2 Challenges

Learning to predict function names (i.e., the mapping Γ) requires
modeling the semantics of both binary functions and their names
and learning how they should align. We discuss five challenges in
this task as follows.

https://github.com/OSUSecLab/SymLM

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

C1: Limited Semantic Information in Stripped Binaries.
Stripped binaries do not have symbol information, which other-
wise provides strong hints for function name prediction [46, 60, 64].
For example, Host et al. [46] propose a set of association rules to
infer the verbs in function names from the identifier names in func-
tion bodies. Liu et al. [64] demonstrate that good function names
can be constructed from semantic information in function bodies.
Moreover, the names of function parameters and return types have
also been shown to be valuable for name prediction [60], but these
valuable semantic information are often stripped in binaries.

C2: Variety of Compilation Settings and Obfuscations. The
use of different compilation settings (e.g., compilers, optimization
levels, and computer architectures) and obfuscations pose signifi-
cant challenges to ML models to learn function semantics, as even
with the same source code, binaries compiled with different compi-
lation flags or obfuscated with compiler-based transformations can
have completely different instructions and control flow graphs [31].

C3: Ambiguous Function Names and Various Naming Meth-

ods. Function names often consist of words in the natural language,
which is by the ambiguous nature of human languages [25]. Part
of the ambiguity stems from the use of morphological forms (e.g.,
synonyms, abbreviations, and even misspellings) [34], and they
are found to be more ubiquitous in function names than in general
written texts [52]. Meanwhile, software developers tend to choose
shorter and more concise names [42]. Consequently, different
developers can name the same function with totally different
words. Feitelson et al. [35] even showed that the probability
that two developers select the same name for the same function
is only 6.9%. Although developers are recommended to name
functions by full words [44], it has been found that abbreviations
are popularly used for many reasons, such as abbreviations being
as understandable as complete words [81]. Single letters are even
found to be meaningful names when properly chosen [16].

Moreover, unlike written texts that divide words by standard
punctuation marks, there are numerous naming conventions sug-
gested by both industry [30] and academia [15]. The delimiters used
by developers are diverse [33]. Based on our observations, develop-
ers can use capital letters, underscores, and even numbers to split
words. Therefore, the ambiguity of function names and the diversity
of naming methods make it difficult to predict function names.

C4: The Out-Of-Vocabulary (OOV) Issue. The OOV issue can
result in poor performance for machine learning models. More
specifically, models generate outputs based on the existing training
vocabulary [39]. Without knowing the OOV classes and labels,
they cannot predict meaningful function names. The model for
function name prediction also suffers from this problem at both
the whole name and individual word levels. At the whole function
name level, our investigation on the binary dataset reveals that
21.7% function names have occurred only once. Although we can
mitigate this problem by splitting names into individual words,
the OOV ratio still remains relatively high, e.g., 5.8% for ARM
binaries. During the investigation, we also found that this issue
usually comes from the bad naming habits from developers such
as the use of uncommon words. For example, Table 2 shows the
categories of OOV words, in which 52.2% OOV words are the direct

Table 1: Comparison with Closely Related Works in Address-

ing Challenges

System Year C1 C2 C3 C4 C5

Debin [41] 2018 ✗ ✗ ✗ ✗ ✗

Punstrip [73] 2020 ✗ ✗ ✓ ✗ ✗

NERO [27] 2020 ✗ ✗ ✗ ✗ ✓✗

Trex [77] 2020 ✓ ✓ ✗ ✗ ✗

NFRE [38] 2021 ✗ ✗ ✓ ✗ ✗

StateFormer [75] 2021 ✓ ✓ ✗ ✗ ✗

SymLM 2022 ✓ ✓ ✓ ✓ ✓

concatenation of multiple words or abbreviations, e.g., sharefile
and streq. Resolving this issue requires an in-depth understanding
and properly modeling of the function name words.

C5: Calling Context Modeling. Calling context is the key
semantic component of binary functions, which has been found
to be helpful for function name prediction at source code level [60].
Therefore, to predict the function name, we need to extend
modeling the behavior of the function itself to its calling context.
However, none of the existing works considers the execution be-
havior of calling context, including the most recent works that have
already made initial attempts to model the functions’ execution
behavior (§2.4). While NERO [27] constructs the function call graph
and includes the information of function call sites as its model’s
input, it does not fully consider the behavior of the called functions.

2.3 Prior Efforts and Our Motivations

Predicting function names of binary code is not new, and there
have been several attempts from the machine learning perspective
recently. However, as shown in Table 1, previous efforts have not
yet adequately addressed the aforementioned five challenges, which
directly motivates us to propose SymLM.

More specifically, Debin [41] lifts the binary code into the BAP
IR and designs a list of association rules derived from the DWARF
entries. Then it trains models based on these association rules
to predict the debug information. However, it does not consider
the calling context and cannot learn function semantics from the
rule-based features because they only contain local information,
e.g., the relationship between operands in the same instruction.
The same issues exist in Punstrip [73] which lifts binaries into the
VEX IR and predicts function names based on a list of hand-crafted
features, e.g., binary file sizes. In contrast, NERO [27] only
considers the calling context, where it constructs call site graphs
from call-related instructions, but ignores all other functions
instructions. Therefore, NERO does not encode the complete
semantics of functions. NFRE [38] proposes a structural instruction
embedding method to standardize instructions. However, the result
representations of instructions will miss their internal semantics.
For example, with this proposed approach, instructions push rbp
and mov rbp, rsp are converted to INST_1325 and INST_0b25.
Thus, existing works have not properly addressed C1 and C2, and
none of them can learn the full semantics of functions.

Moreover, Debin predicts function names at the whole name
level, which does not consider C3 and C4. Meanwhile, NERO di-
vides function names into words, but does not propose any solutions
toC3 andC4. Punstrip and NFRE find synonyms by using existing
synsets, generated from the general English corpus, which cannot

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

𝐻𝐻1

𝐻𝐻𝑖𝑖

𝐻𝐻𝑖𝑖+1

𝐻𝐻𝑖𝑖+2

𝐻𝐻𝑛𝑛

Embedding Hidden States

…

…

Transformer
encoder

eax = 2
eax = 1
eax = 4

Masked Input

Code Value

sub eax, 1
sub eax, 3

…

…

Figure 2: Microtrace-based Pretrained Model

identify morphological words specific to the software domain. And
both works ignore the OOV word problems and fail to address C4.
For C5, only NERO partially solves it by considering callee names
and arguments, while others do not solve it.

2.4 Microtrace-Based Pretraining

Recently, Trex [77] was proposed to learn the instructions’ execu-
tion semantics by pretraining the model with micro-execution trace
values. Trex has shown the promise of the execution-aware mod-
eling on the task of detecting semantically similar binary functions.
Figure 2 shows the pretrained model of Trex. The model takes as
input the code and values collected by microexecuting function
instructions. For example, the values of the register eax are 1 and
4 before and after executing the second instruction. When given a
masked operand in this instruction, Trex tries to reason the execu-
tion logic behind the calculation of 1?3=4. In this case, by training
to minimize the loss of prediction of the masked tokens, Trex is
expected to learn the execution semantics of add. After pretraining,
Trex generates semantic embeddings (the vector representation) of
each instruction, which can be further used to detect binary func-
tions with the similar execution behavior. Similarly, its followup
work StateFormer [75] also learns the semantics of function execu-
tion behavior for type inference. However, Trex and StateFormer
are not designed for function name prediction, and thus they cannot
solve the corresponding challenges (C3 andC4) as shown in Table 1.

Missing Calling Context. Unfortunately, Trex does not consider
the side effect of function calls either, so it can only learn partial
function semantics. The same problem also exists in StateFormer,
which limits their usability of binary function semantics under-
standing while facing the challenge C5. To bridge the gap, we
propose SymLM, based on the microtrace-based pretrained model,
to learn the full function semantics for function name prediction.

3 OVERVIEW

Figure 3 presents SymLM’s workflow on function name prediction,
which consists of three key steps: (i) function semantics encoding
to understand the comprehensive semantics of binary functions
and encode them as structured representations, (ii) function name
preprocessing and CodeWordNet training to model function name
semantics by mitigating language ambiguity in the context of func-
tion names and reducing OOV words, and (iii) training and testing
to learn the mapping from full function semantics embeddings to
names and predict names. We describe each of the steps as follows.

Table 2: Categories of OOV Function Name Words

Category Ratio Examples

1 Abbreviation concatenation 29.9% statinfo, streq
2 Clean word concatenation 22.3% sharefile, startpoints
3 Misspelling 14.6% anewer, tac, sb
4 Clean word 12.1% dependent, specifer
5 Abbreviation 7.0% utils, pred
6 Inflection 9.6% addresses, using
7 Digits in word 4.5% add32, merge2

Function Semantics Encoding. In this step, we aim to train the
model to generate the vector representation 𝐸E that approximately
encodes the function semantics E. To this end, we propose a novel
semantic fusing encoder module, which first encodes the semantics
of the calling context C and function instructions I as 𝐸C and 𝐸I ,
respectively, and then fuse them together as 𝐸E .

At first, SymLM constructs inter-procedural control flow graphs
(ICFGs) by disassembling the input binaries. In Figure 3, we show an
example ICFG of a function (node 3), which has two callers (node 1
and 2) and two callees (node 4 and 5), where node 1-4 are the internal
functions and node 5 is an external function of the input binary.

Next, SymLM follows two major steps to generate 𝐸I : (1) it
first uses the microtrace-based pretrained model (Figure 2) to
generate embeddings of function tokens (we define this process
as transformer encoding in Figure 3), and then (2) it downsamples
the token embeddings to generate structured representations (𝐸I)
(see §4.1). For node 3 in Figure 3, we use 𝐸𝑖𝑛3 to specify its 𝐸I .

To produce 𝐸C , SymLM needs to encode the execution behavior
of both the callees and callers. Since node 1, 2 and 4 are the internal
functions, SymLM uses the same approach of generating 𝐸I to
obtain the semantic embeddings 𝐸𝑖𝑛1 , 𝐸𝑖𝑛2 , and 𝐸𝑖𝑛4 . For the external
function (node 5), whose instructions are often not accessible in
binaries (e.g., the dynamically linked binaries), SymLM generates
its embeddings 𝐸𝑒𝑥5 by looking up an embedding table (see §4.1).
Finally, SymLM integrates the embeddings of callees and callers to
form 𝐸C (𝐸C = {𝐸𝑖𝑛1 , 𝐸

𝑖𝑛
2 , 𝐸

𝑖𝑛
4 , 𝐸

𝑒𝑥
5 }) and generates the full function

semantics encoding 𝐸E based on Equation 1.

Function Name Preprocessing and CodeWordNet Training.
We develop preprocessing steps and train CodeWordNet to tackle
the problem of the ambiguous function names and OOV words.
Specifically, SymLM first tokenizes the whole function name into
multiple individual word tokens. To address the OOV problem,
we identify 7 categories of OOV issues (see Table 2) and develop
multiple solutions to tackle each of them, described in the following.

First, during tokenization, we lemmatize and remove digits of
words to address OOV categories 6 and 7 in Table 2. Second, we
build a word segmentation model, based on the unigram language
model [55], to segment the concatenated words of OOV categories
1 and 2 (see §4.2), and reduce the rest problems into OOV categories
3, 4, and 5. As the key reason for words in OOV categories 3, 4, and
5 is the use of morphological forms (e.g., synonyms, abbreviations
and misspellings), we design the CodeWordNet module, which can
generate distributed representations of words in the context of
function names (see §4.3). With this module, SymLM can measure
the semantic distance of words, model function name semantics,
and address OOV issues in categories 3, 4, and 5.

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

…

xallocoversize

0110
1101

Disassembling

Inter-procedural CFG

[0.13, -0.23 … 0.54]
…

[0.89, 0.35 … 0.41]
…

[-0.58, 0.20 … 0.77]
…

[0.54, 0.43 … 0.96]
…

[0.13, 0.23, … -0.79]

Fusing

Step 1: Function Semantics Encoding

Binary

name

Name Corpus

test_exists
VarMaps

[test, exist]
[var, map]

Tokenization Word Segmentation

x alloc over size

x allo cover size

xa lloc over size
CodeWordNet

Step 2: Function Name Preprocessing & CodeWordNet Training

Training data

MLP Decoder

Encoding

Preprocessing

011
110

Test data

Encoding

011
110

name1
name2

…
nameN

Step 3: Training & Inference Training

Inference

Transformer
encoding

Pooling

read [0. 21 0.53 … -0.79]
write [0. 15 -0.12 … 0.47]

… ….

Embedding Lookup

𝐻𝐻 ∈ ℛ𝑛𝑛×𝑚𝑚 𝐻𝐻1 ∈ ℛ1×𝑚𝑚

�𝐻𝐻 ∈ ℛ1×𝑚𝑚

𝐻𝐻𝑘𝑘 ∈ ℛ𝑘𝑘×𝑚𝑚

𝐸𝐸𝑖𝑖𝑛𝑛 ∈ ℛ(𝑘𝑘+2)×𝑚𝑚

𝐸𝐸𝑒𝑒𝑒𝑒 ∈ ℛ1×𝑚𝑚

[0.21, 0.53 … -0.79]
…

External

Internal
1 2

3

4 5

𝐸𝐸1𝑖𝑖𝑛𝑛 𝐸𝐸2𝑖𝑖𝑛𝑛

𝐸𝐸3𝑖𝑖𝑛𝑛

𝐸𝐸4𝑖𝑖𝑛𝑛 𝐸𝐸5𝑒𝑒𝑒𝑒

Full Function Semantics Embedding

Figure 3: SystemWorkflow

Training and Inference. To learn the semantic mapping Γ from
function semantics to names (Equation 2), we train SymLM using
the binaries with debug information, where the ground truth
function names are parsed from symbol tables. For training, SymLM
first encodes the full function semantics into embeddings, then
preprocesses the ground truth, decodes the function semantic em-
beddings into predicted names by its multi-layer perception (MLP)
decoder, finally gets trained by minimizing the prediction loss (§4.4).
For inference, SymLM takes as input stripped binaries and predicts
function name words based on the function semantics encodings,
in which SymLM also leverages CodeWordNet to generate words
that semantically match the input function semantics.

4 DETAILED DESIGN

4.1 Function Semantics Encoding

ICFG Construction and Input Generation. As discussed in §3,
encoding the semantics of calling context requires understanding
both callers and callees. To systematically analyze the control flows
and determine function callers and callees, we set up to construct
inter-procedural control flow graphs (ICFGs) from input binaries.
More specifically, we first build a parser, based on the binary disas-
sembler, to analyze input binaries. By iterating every binary func-
tion, the parser resolves the entry points of its callees and callers to
build the ICFGs. Meanwhile, the parser prepares inputs for the func-
tion semantics encoding module to learn semantics for internal and
external functions. For internal functions, five input sequences (in-
cluding code, value, operand position, instruction position, and ar-
chitecture sequences) are generated as the input for the macrotrace-
based pretrained model (Figure 2). For external functions, only their
names (if available) are collected for embedding lookup.

Internal Function Embedding. Internal function embedding is
to encode the semantics of function instructions I as the vector
representation 𝐸I , which is the key component of the function
semantics. This process contains two steps.

First, SymLM generates semantic embeddings of every token
in function instructions I by the microtrace-based pre-trained
model. Specifically, as shown in Figure 2, the pre-trained model
takes as input the parsed sequences, then creates input token
embeddings with the embedding layer, and finally produces the
hidden states with the transformer encoder. We use the hidden
states {𝐻1, 𝐻2, ..., 𝐻𝑛} of the last layer as the semantic embeddings
of the function instruction tokens.

Second, SymLM downsamples the token embeddings to generate
structured representations 𝐸I . Unlike Trex which directly uses the
mean of all tokens as function embeddings, we propose a specific
pooling scheme for downsampling to achieve better performance.
In particular, we observed that, in natural language processing
tasks, the direct use of [CLS] token [29] embedding and the mean
of all token embeddings as sentence embedding has been shown to
be ineffective, which can cause 17.5% and 10.3% performance degra-
dation respectively [59]. The root cause is that the BERT-based
pretrained models generate anisotropic token embeddings [59].
The observations of the performance degradation motivate us
to propose a new pooling scheme for generating 𝐸I instead of
directly using embeddings of [CLS] or the mean of all tokens.

Motivated by BERT-flow [59] and BERT-whitening [48], our
embedding pooling scheme combines multiple downsampled em-
beddings, including [CLS] token embeddings, the mean of all token
embeddings, and the token-position-insensitive embeddings, as
function semantic embeddings 𝐸I . In particular, we denote 𝐻1 as
the [CLS] token embedding, since it is the first input token of the
pretrained model [77]. Then the mean of all token embeddings can

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

by calculated by:

𝐻 =
1
𝑛
×

𝑛∑︁
𝑖=1

𝐻𝑖 (3)

For token-position-insensitive embedding generation, we sample
the column-wise top-𝑘 elements from 𝐻 :

𝐻𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ∈𝐻 ′,𝐻 ′⊂𝐻,𝐻 ′∈R𝑘×𝑚 {ℎ} (4)

By concatenating the above embeddings, SymLM generates internal
function embeddings as:

𝐸I = {𝐻1, 𝐻, 𝐻
𝑘 } ∈ R(𝑘+2)×𝑚 (5)

In Figure 3, we visualize our proposed pooling scheme, where
𝐸I is specified for internal functions as 𝐸𝑖𝑛 to differentiate it
from the embeddings of external functions (𝐸𝑒𝑥). Moreover, our
proposed pooling scheme is highly effective, and our experimental
results show that it improves SymLM’s prediction performance by
35.4% (see §5.5 for more details).

External Function Embedding. External function embedding is
to encode external function semantics. In real-world binaries, the
function instructions of external functions are not always available,
especially for dynamically linked binaries. Thus, we cannot use
the microtrace-based pre-trained model and our proposed pooling
scheme to generate embeddings for external functions. However,
our key observation is that the semantics of external functions
are usually fixed and well described by their names, such as Linux
system calls [6]. Therefore, as shown in Figure 3, SymLM generates
external function embeddings 𝐸I (we specify 𝐸I for external
functions as 𝐸𝑒𝑥 in Figure 3) from an embedding loopup table,
which is achieved by an embedding layer [78]. To build the lookup
table, we collect a vocabulary of external function names from our
training dataset. Based on this vocabulary, the embedding layer
randomly initializes a dictionary to represent the semantics of the
external function, which will be updated during model training
to get the optimal embeddings for external functions. When the
external function names are not available, we discard the effect
of corresponding function calls.

Calling Context Embedding. As defined in §2.1, the calling con-
text C includes callers C+ and callees C− . Here, we consider callers
as internal functions (since we cannot know the external callers), so
we can generate their embeddings by Equation 5. For callees, they
can be either internal or external functions, which can be encoded
with the ahead-mentioned methods. However, there is still a prob-
lem to be solved. That is, different binary functions have different
numbers of callees and callers and the direct callees and callers
can also have their own (indirect) callees and callers. One potential
solution is to consider the complete function call effects. However,
we observe that this solution dramatically affects SymLM’s train-
ing and testing efficiency, as computers (or hardware accelerators)
have limited memory and computational capacity. Alternatively,
motivated by BinGo [21] and Asm2vec [31], we propose a selective
calling context fusing method to solve the problem by two steps: (1)
SymLM ranks callers and callees based on their frequency of calling
or being called by the target function, and (2) SymLM concatenates
the embeddings of top-𝑛 callers and top-𝑛 callees as calling context

embeddings 𝐸C without considering indirect calls:

𝐸C = {𝐸C+
1
, ..., 𝐸C+

𝑛
, 𝐸C−

1
, ..., 𝐸C−

𝑛
} (6)

where 𝐸C+
𝑖
and 𝐸C−

𝑗
are the embeddings of 𝑖-th caller and 𝑗-th callee

generated by the aheadmentioned embedding methods.

Embedding Fusing. Embedding fusing is to generate the full func-
tion semantic embedding 𝐸E by fusing the embeddings of function
instructions and the calling context, 𝐸I and 𝐸C , based on Equa-
tion 1. Here, we fuse embeddings by concatenating them together:

𝐸E = {𝐸I , 𝐸C} (7)

4.2 Function Name Preprocessing

As analyzed in §2.2, the OOV issue can result in poor performance
for function name prediction. A potential solution is to use
Byte-Pair-Encoding (BPE) [83]. Unfortunately, it limits our choice
of decoders into the sequential models (e.g., LSTM [43]), which
are found to be ineffective (see §5.5). Alternatively, we propose
a set of preprocessing approaches to address the OOV issue.
Function Name Tokenization. Function name tokenization is
to split function names as individual words, which requires under-
standing of how function names are composed. Therefore, we man-
ually investigated 776 names (randomly sampled from 388 binaries).
Our key finding is that there are three major naming conventions:
camelCase, PascalCase and snake_case, which split names by capital
letters and underscores (_). Therefore, we tokenize function names
by capital letters and underscores. However, as shown in Table 2, we
still findmanyOOVwords in tokenization results.With amanual in-
vestigation, we identify 7 categories of how OOV words are formed.

In particular, for category 7, we observe that developers often
combine two words with one digit or put digits at the end of one
word. Therefore, we split the words by eliminating the middle digit
and removing the digits at the end of the words. For category 6
(inflection words), we follow two steps to lemmatize the OOVwords
into their original forms. First, we identify the tag of every word
by part-of-speech (POS) tagging [87], as different tags of words
have different inflection methods. For example, plural nouns are
generated by adding -s or -es, and verbs are inflected by changing
their tense with -ing or -ed. Second, we lemmatize words based
on POS tags and convert the resulting words into lowercase forms.
To this end, we process the OOV words in categories 6 and 7.
Word Segmentation. Word segmentation is to detect word
boundaries and then segment words. As presented in Table 2, the
majority (52.2%) of OOV words are in categories 1 and 2, and the
root cause is that developers directly concatenate two words (or
abbreviations). One potential solution is to directly use existing
word segmenting tools, such as Word Ninja [28] that has 500+
stars on Github, or to adopt existing tools proposed by the natural
language processing community (e.g., [82]). Unfortunately, none
of them can effectively segment function names, because existing
approaches and tools are for general written texts, while function
names have domain-specific words and jargons.

To address this problem, we train an unigram language
model [55] based on a large corpus of function names. Specifically,
the unigram language model assumes that unigram tokens have

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

independent probability of occurrence, and hence the probability of
the unigram token sequence 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛} is the multiplication
product of all its tokens:

𝑃 (𝑇) =
𝑛∏
𝑖=1

𝑝 (𝑡𝑖), ∀𝑡𝑖 ∈ V, (8)∑︁
𝑡 ∈V

𝑝 (𝑡) = 1, (9)

whereV is the vocabulary. IfV is given, the probabilities of uni-
gram tokens can be estimated by maximizing the likelihood:

𝐿 =

|𝐶 |∑︁
𝑠=1

𝑙𝑜𝑔(𝑃 (𝑇 𝑠)) =
|𝐶 |∑︁
𝑠=1

𝑙𝑜𝑔(
∑︁

𝑡 ∈𝑆 (𝑇 𝑠)
𝑃 (𝑡)) (10)

where𝐶 is the corpus and 𝑆 (𝑇) is a set of all possible segmentation
candidates. To apply this model for function name segmentation, we
first curate a large function name corpus from CodeSearchNet [49],
which contains millions of functions. From CodeSearchNet, we
successfully extracted 1,506,742 function names as the raw corpus.
Next, we apply the previously introduced tokenization steps on the
corpus to remove noises. With a pre-determined vocabulary size1,
we follow the heuristic steps [55] to train the unigram language
model. Finally, the optimal word boundaries can be decided by:

𝑡∗ = argmax
𝑡 ∈𝑆 (𝑇)

𝑃 (𝑡), (11)

With the proposed segmentation method, we successfully solve
the OOV issues in categories 1 and 2 (Table 2). And our experimental
results show that it can effectively mitigate most of OOV words
along with our preprocessing approaches, e.g., the OOV ratio of
our ARM-O0 test set is reduced from 10.9% to 1.7% (see §5.5).

4.3 Function Name Semantics Modeling

Although we have addressed 4 categories of OOV words (Table 2)
by preprocessing, OOV words in categories 3, 4, 5 still exist and
affect SymLM’s performance. Moreover, even if some words have
been seen by our model, it is still hard to predict names as the same
ones given by developers. The root cause of this problem is the
use of morphological words (e.g., synonyms, abbreviations, and
misspellings) in function names. To identify morphological words,
a manual approach can work for a small set of words, but it will fail
for large datasets. To thoroughly address the problem, we propose
CodeWordNet, a function name semantic encoding module.
CodeWordNet Training. We train CodeWordNet to generate dis-
tributed representations to encode the function name semantics.
Specifically, we leverage three existing word embedding models:
Continuous Bag of Words (CBOW) [67], Skip-Gram [67], and Fast-
Text [19], which have been widely used for generating distributed
representations of program code (e.g., [12]). CBOW learns condi-
tional probabilities of central words given context words in a fixed-
size context window, while Skip-Gram learns conditional probabili-
ties in the opposite way. FastText considers words at subword level,
which helps it generate better word embeddings for rare words than
the other models. We train CBOW, Skip-Gram and FastText models

1We set the vocabulary size as 16K according to the suggested optimal vocabulary
sizes: https://github.com/google/sentencepiece/issues/415

-4 -2 0 2 4

2

3

4

5

func
recv

alloc

buf
str

function

exec address
addr

resp
rsp

initialize
setup

configure

initialise
receive

memcpy

string

directory
file

execute

run

buffer

Figure 4: Visualization of Function Name Word Embeddings.

The distance between words shows their semantic similarity.

by setting 3 for the window size2 and enable negative sampling to
reduce the cost of calculating softmax values [67]. Three models
automatically converge to generate stable word embeddings.
Morphological Word Search.With CodeWordNet, we can search
and find the moriphological words for the query words. Specifically,
CodeWordNet first encodes every word 𝑤 in the vocabulary V
(∀𝑤 ∈ V) as the embedding vector 𝑒 (𝑤). Then it finds the most
similar words𝑤 (𝑤 ≠ 𝑤𝑞) to the query word𝑤𝑞 by:

argmax
𝑤∈V

𝑐𝑜𝑠 (𝑒 (𝑤), 𝑒 (𝑤𝑞)) = argmax
𝑤∈V

𝑒 (𝑤) × 𝑒 (𝑤𝑞)
| |𝑒 (𝑤) | | × | |𝑒 (𝑤𝑞) | |

(12)

where 𝑐𝑜𝑠 (·) is a cosine function. By applying Equation 12 to the
three word embedding models, we obtain three sets of top-𝐾 most
similar words for𝑤𝑞 . We visualize the results using t-SNE [88] to
understand the effectiveness of our models. Figure 4 gives a visual-
ization example of the CBOW word embedding. We find that the
semantic similar words are close to each other, which indicates that
the model can effectively measure semantic similarity by calculat-
ing the distance of function name words. We also find CBOW and
Skip-Gram are good at learning synonyms and abbreviations, while
FastText is effective at identifying misspellings.

Next, we combine all three similar word sets as themorphological
word candidate set𝑀 (𝑤𝑞). In this process, we observe some noisy
candidates, e.g., smp for comp. Motivated by prior works [24, 38],
we propose a set of approaches to remove noisy candidates. First,
we use the Damerau-Levenshtein distance [97] to calculate the edit
distance of the strings between the queryword𝑤𝑞 and the candidate
word𝑤 . To mitigate length biases, we calculate the relative distance
by:

𝑑𝑟 =
𝑑 (𝑤,𝑤𝑞)

𝑚𝑎𝑥 (| |𝑤 | |, | |𝑤𝑞 | |)
(13)

where 𝑑 (·) is the Damerau-Levenshtein distance function and | |𝑤 | |
is the word length. Furthermore, we denoise the candidate set by
only preserving candidate words𝑤 if any of the following rules is
satisfied: (1) at least two of all three models agree that𝑤 is in the
top-𝐾3 most similar word set of𝑤𝑞 , (2) 𝑑𝑟 < 1

3 and the first letters
of𝑤 and𝑤𝑞 are the same, (3)𝑤 starts with𝑤𝑞 or𝑤𝑞 starts with𝑤 .

2The average number of words in function names is found to be 2.6 [35]
3In this work, we choose 𝐾 = 5.

https://github.com/google/sentencepiece/issues/415

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

Finally, we follow the same manual validation approach as existing
works [24, 38] to further remove the noise candidates from the can-
didate set𝑀 (𝑤𝑞). To this end, we successfully identify the semantic
similar morphological word set and address the OOV words in cat-
egory 3, 4, and 5 (Table 2). Our evaluations show that the use of
function name preprocessing and CodeWordNet modules can effec-
tively improve SymLM’s performance by 16.7% in F1 score (see §5.5).

4.4 Training and Inference

As defined in §2.1, function name prediction is to map function se-
mantics into names. In SymLM, this mapping is learned by training
SymLM on binary function datasets.

Training on Binary Function Datasets. According to the prob-
lem definition in §2.1, function name prediction is a multi-class
multi-lablel classification problem. Unlike existing works [27, 38]
that use sequential models (e.g. LSTM [43]) to generate output
words, we use a multi-layer perception (MLP) model, as we find it is
more effective for this task according to our evaluations (see §5.5).
The MLP model takes as input the function semantic embeddings
𝐸E and then predicts function names by:

𝑊 = 𝜓2 (𝜔2 ·𝜓1 (𝜔1 · 𝐸E + 𝑏1) + 𝑏2) (14)

where 𝜔 and 𝑏 are the weights,𝜓 (·) is the activation function, and
𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛} is the function name that has been prepro-
cessed into individual words𝑤𝑖 . To update parameters of the MLP
model, the pre-trained model, and the external function embedding
layer, we minimize the loss:

𝐿 =
∑︁
𝑤𝑖 ∈V

𝑙𝐶𝐸 (𝑤𝑖 ,𝑤𝑖) (15)

where𝑤 and �̂� are the ground truth and the predicted words,V is
the vocabulary, and 𝑙𝐶𝐸 (·) is the cross entropy loss function.

Function Name Inference. Function name inference is to predict
names of test binary functions with the well trained SymLM model.
However, as discussed in §2.2, it is very challenging to have the pre-
dicted names exactly matching the ground truth, which prohibits
us demonstrating the effectiveness of SymLM. To address this prob-
lem, we take advantage of our proposed preprocessing approaches
and the CodeWordNet module to perform semantic matching and
mitigate OOV words of the ground truth. For semantic matching,
we preprocess the ground truth to tokenize function names into
words and reduce the OOV words. Next, we use CodeWordNet to
match semantically similar words between the ground truth and
predictions. Specifically, if the predicted words do not match the
ground truth, we run CodeWordNet to identify their morphological
words. If the morphological words are found in the ground truth,
we treat them as correct predictions in our evaluations.

5 EVALUATION

We have implemented SymLM using Ghidra [69], and also the open-
source microtrace-based pretrained model from Trex4 [77], with
additional 1,864 lines of our own code. Particularly, we built our
4Note thatTrex has open sourced its pretrainedmodel at https://github.com/CUMLSec/
trex with 60,606,229 number of parameters. Their model is pretrained on 1,472,066
binary programs in 10 days using 4 Nvidia RTX 2080-Ti GPUs. We directly leverage this
pretrainedmodel, but we have to perform additional training for our semantic fusing en-
coder module and the MLP decoder, which took 8 days in our evaluation environment.

Table 3: The Projects in Our Dataset

Project # Binaries Project # Binaries

libtomcrypt 6528 libpng 48
binutils 3750 inetutils 44
coreutils 2485 bison 43
sg3-utils 1872 ImageMagick 32
putty 188 bc 32
findutils 128 libmicrohttpd 29
libgmp10 120 nano 24
imagemagick 108 sed 24
less 96 cflow 24
diffutils 88 wget 22
sqlite3 84 sqlite 16
openssl 81 busybox 16
curl 72 zlib1g 4
bash 69 - -

function name preprocessing component based on NLTK [17] and
SentencePiece [56], and constructed CodeWordNet based on Gen-
sim [79]. We developed a Ghidra plugin and scripts to disassemble
binaries, construct ICFGs, and parse debug information. We built
the other components of SymLM with Pytorch [72] and fairseq [71].

In this section, we present the evaluation results. Particularly,
we evaluated SymLM to answer the following research questions:

• RQ1: How effective is SymLM in function name prediction?
• RQ2: How does SymLM compare to the state of the art?
• RQ3: How can SymLM generalize to unknown binaries and
resist obfuscations?

• RQ4: How can SymLM’s components improve its perfor-
mance?

5.1 Evaluation Setup

Datasets.We built our datasets with 27 open-source projects, in-
cluding these being widely used in prior works [31, 75, 93], e.g.,
coreutils [1] and binutils [3]. We compile these projects using gcc-
7.5 into different computer architectures (x86, x64, ARM, and MIPS)
and different optimization levels (O0, O1, O2, and O3). To examine
how SymLM can resist obfuscations, we obfuscate binaries with
Hikari [4]. Specifically, we enable four obfuscation options, includ-
ing bogus control flow (bcf), control flow flattening (cff), instruc-
tion substitution (sub) and basic block splitting (split), which
are also used in other learning-based binary tasks [31, 77]. Finally,
we obtain the datasets with 16,027 different binaries and 1,431,169
functions. Table 3 presents the details of binary numbers across the
projects. We then split this dataset into training, validation, and
test sets with a split ratio of 8:1:1 in binary level, which is adopted
by other function name recovery experiments [27, 41].
Evaluation Metrics. We follow the same evaluation metrics as
prior works [27, 38]. Specifically, given the ground truth function
name𝑊 = {𝑤1,𝑤2, ...,𝑤𝑛} and the predicted function name �̂� =

{𝑤1,𝑤2, ..., ˆ𝑤𝑚}, we define a membership function:

1(𝑊,�̂�) =
{1, �̂� ∈𝑊
0, �̂� ∉𝑊

(16)

https://github.com/CUMLSec/trex
https://github.com/CUMLSec/trex

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Table 4: Overall Performance across Different Architectures

(ARCH) and Optimizations (OPT)

ARCH OPT Precision Recall F1 Score

x86

O0 0.637 0.646 0.642
O1 0.682 0.702 0.692
O2 0.744 0.829 0.784
O3 0.783 0.833 0.807

x64

O0 0.497 0.567 0.530
O1 0.769 0.827 0.797
O2 0.808 0.831 0.830
O3 0.829 0.830 0.849

arm

O0 0.446 0.494 0.469
O1 0.611 0.681 0.644
O2 0.672 0.717 0.694
O3 0.646 0.689 0.667

mips

O0 0.453 0.511 0.480
O1 0.507 0.529 0.518
O2 0.724 0.790 0.755
O3 0.563 0.588 0.575

which indicates whether the predicted word �̂� exists in the ground
truth𝑊 . We then calculate the true positive (𝑡𝑝), false positive (𝑓 𝑝),
and false negative (𝑓 𝑛) by:

𝑡𝑝 =
∑︁
�̂�𝑖 ∈�̂�

1(𝑊,𝑤𝑖), 𝑓 𝑝 = | |�̂� | | − 𝑡𝑝, 𝑓 𝑛 = | |𝑊 | | − 𝑡𝑝 (17)

where | |𝑊 | | and | |�̂� | | are the numbers of words in𝑊 and�̂� . Given
𝑁 evaluation functions, we calculate precision (𝑃), recall (𝑅) and
F1 score (𝐹1) by:

𝑃 =

∑𝑁
𝑖=1

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓 𝑝𝑖
𝑁

, 𝑅 =

∑𝑁
𝑖=1

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓 𝑛𝑖
𝑁

, 𝐹1 = 2 × 𝑃 × 𝑅
𝑃 + 𝑅 (18)

Evaluation Environment.We performed the experiments on two
machines: (1) a 64-bit Ubuntu 18.04 desktop machine, which has a
12-core Intel Xeon E5-1650 3.60GHz CPU, 64 GB memory, 4TB disk
storage and 4 NVIDIA GeForce GTX 1080 Ti graphics cards, and
(2) a 64-bit Windows 10 desktop machine, which has a 6-core AMD
Ryzen 5 5600X CPU, 16 GB memory, and 1TB disk storage.

5.2 RQ1: Overall Effectiveness

We first studied how SymLM performs on our datasets. Table 4
presents the overall performance of SymLM. Among different archi-
tectures and optimizations, SymLM achieves the weighted average
performancewith 0.634 precision, 0.677 recall, and 0.655 F1 score. As
SymLM predicts function names at the word level, this performance
implies it can make semantically (or partially) correct predictions
at the name level (see examples in §6.1).

We observe that SymLM performs better on O1-O3 binaries than
O0 binaries. By manually inspecting binaries in different optimiza-
tions, we find that there are more functions in O0 binaries than
O1-O3 binaries, which are compiled from the same projects. For ex-
ample, compiling the bison5 project with O0 and O1 optimizations
renders 1,158 and 795 functions, respectively, for the x64 architec-
ture. We hypothesize that function inlining causes the different

5https://www.gnu.org/software/bison/

O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3
0.0

0.5

Pe
rfo

rm
an

ce

RecallPrecision F1 Score
NFRE SymLM

Figure 5: Performance of NFRE and SymLM on Predicting

Function Names of x64 Binaries
6

numbers of functions, which is enabled for O1-O3 optimizations as
specified in GCC manual [7]. Another possible reason for the lower
performance of O0 optimization may come from information loss
during function semantics encoding, where SymLM compresses
callees into embeddings and fuses them into function embeddings.
With more callees in O0 functions, this information loss increases.
RQ1 Answer: SymLM is effective in predicting binary function
names, and it achieves 0.634 precision, 0.677 recall, and 0.655
F1 score across different architectures and optimizations.

5.3 RQ2: Baseline Comparison

We compare SymLM with the state-of-the-art binary function name
prediction tools, NERO [27] and NFRE [38]. According to their re-
ported results, both tools outperformDebin [41], e.g., NERO is 39.4%
more accurate than Debin. We have also run Debin’s released mod-
els7 on our datasets for 178 hours, and we obtained similar observa-
tions, e.g., it achieves 0.040 precision, 0.042 recall and 0.041 F1 score.
Punstrip [73] is publicly available8, but we cannot set it up based
on its documentations. And the same problem was also reported
by the other users9, which has not been addressed yet. Therefore,
we skip reporting the evaluation results of Debin and Punstrip.

Comparison with NFRE. NFRE’s training code is not open
sourced in its Github repository10. So we contacted NFRE’s authors
to request the code and received its scripts, IDA Pro [5] plugins,
and data for training and evaluating models for x64 binaries. To
evaluate NFRE, we first build a raw dataset of x64 binaries by
running IDA Pro with the plugins. Next, we process this dataset
based its original preprocessing steps [38], and train NFRE models
on it. To give a fair comparison, we report NFRE’s best performance
and the evaluation results of SymLM that are trained and evaluated
on the same training and test sets in Figure 5.

SymLM outperforms NFRE by 16.9%, 25.1%, and 22.1% in preci-
sion, recall and F1 score. Specifically, NFRE achieves the average
performance of 0.621 precision, 0.610 recall, and 0.616 F1 score,
and SymLM gets the average performance of 0.726 precision, 0.764

6The data and codes received from NFRE’s authors only work for x64 binaries.
7https://github.com/eth-sri/debin
8It was available in https://github.com/punstrip/punstrip at the time of paper writing.
9https://github.com/punstrip/punstrip/issues/1
10https://github.com/USTC-TTCN/NFRE

https://www.gnu.org/software/bison/
https://github.com/eth-sri/debin
https://github.com/punstrip/punstrip
https://github.com/punstrip/punstrip/issues/1
https://github.com/USTC-TTCN/NFRE

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

Precision Recall F1 Score
0.0

0.2

0.4

0.6

Pe
rfo

rm
an

ce

NERO SymLM

Figure 6: Performance of NERO and SymLM on NERO’s

Datasets

recall, and 0.751 F1 score. Among the three metrics, SymLM signifi-
cantly outperforms NFRE on recall, which is important for many
reverse engineering tasks, e.g., malware analysis [92] and disas-
sembling [85]. While a high recall indicates a large true positive
and a small false negative (Equation 18), it means SymLM can cor-
rectly predict more ground truth than NFRE. While training NFRE,
we also observe that NFRE converts instructions into standard
representations. For example, push rbp and mov rbp, rsp are
converted into INST_1325 and INST_0b25. This observation and
the performance difference shown in Figure 5 confirm our hypoth-
esis (§2.3): our function semantics encoding methods can achieve
better performance than learning from hand-crafted features.

Comparison with NERO. The dataset and code of NERO have
been open sourced in Github11, so we evaluate its best model (the
graph model) on its own dataset. NERO’s dataset contains 483,
45 and 13 binaries for training, validation, and testing. We follow
NERO’s original settings to train the model, and we also train and
evaluate SymLM on the same datasets. Figure 6 presents the evalu-
ation results, in which SymLM outperforms NERO by 15.4%, 59.6%,
and 35.0% in precision, recall, and F1 score. Similar to the results of
NFRE, SymLM gains much better recall than NERO, which is im-
portant for downstream tasks. Since NERO discards all instructions
that are not related to function call sites and arguments, we believe
that the performance difference shown in Figure 6 demonstrates
the importance of learning the full function semantics.
RQ2 Answer: SymLM is more effective than the state-of-the-
art works. For example, it outperforms NERO by 15.4%, 59.6%,
and 35.0% on precision, recall and F1 score.

5.4 RQ3: Generalizability and Obfuscation

Resistance

Generalizability. In the real-world deployment scenarios, test
binaries are usually new to machine learning models, whose gen-
eralizability can be revealed by evaluations on unknown binaries.
A poor generalizability means either the model is over-fitted, or
its features are limited to its training sets. To examine the gener-
alizability of SymLM, we first build an evaluation dataset with 540
binaries, compiled from 12 open sourced projects (e.g., usbutils [8])
with the same compilation setting as §5.1. We guarantee that the
evaluation binaries have never been used for training before. Next,
we directly run the previously trained SymLM and NFRE models
11https://github.com/tech-srl/Nero

Precision Recall F1 Score
0.00

0.02

0.04

0.06

0.08

Pe
rfo

rm
an

ce

NFRE
SymLM

(a) SymLM v.s. NFRE

Precision Recall F1 Score
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pe
rfo

rm
an

ce

NERO
SymLM

(b) SymLM v.s. NERO

Figure 7: Generalizability of NFRE, NERO, and SymLM on

Unknown Binary Functions

on the evaluation dataset (with retraining) and report the results in
Figure 7a. Compared with NFRE, SymLM achieves 137.1%, 187.5%,
and 155.9% better performance on precision, recall and F1 score,
which indicates a better generalizability.

Furthermore, we evaluate and compare the generalizability of
SymLM and NERO from a data mining perspective, following the
approach proposed by Gao et al. [38]. That is, in NERO’s test set,
some functions exist in both train and evaluation sets, which are
considered as leaked samples. Testing the models on the non-leaked
test functions can also show their generalizabilities [38]. Therefore,
we first collect non-leaked functions from NERO’s test set. Next, we
evaluate NERO and SymLM with the collected functions and report
their results in Figure 7b. It clearly shows the performance gap
between NERO and SymLM, in which SymLM outperforms NERO
by 200.0%, 461.9%, 295.5% on precision, recall and F1 score.

We believe that the main reason for the generalizability differ-
ence between SymLM and the baselines is that SymLM learns func-
tion semantics instead of the dataset-specific features. However, al-
though we have demonstrated the better generalizability of SymLM,
its overall performance is still not as good. We investigated and
identified two potential reasons. First, the training and generalizabil-
ity evaluation sets have different function name vocabularies, e.g.,
11.8% of evaluation vocabulary words are not present in SymLM’s
training sets. Second, the KL divergence [77] between the generaliz-
ability evaluation and training sets is 2.4x larger than that between
training and test sets used in §5.2, where the distribution shifts
degrade SymLM’s performance. We provide more discussions in §7.

Obfuscations Resistance. Real-world binaries are often obfus-
cated (particularly for malware), so we also examine how SymLM
can resist obfuscations. Specifically, we show its performance by
comparing with NFRE, which has the best reported performance
among the baselines [38]. Table 5 presents the F1 scores of SymLM
and NFRE evaluated on the orginial (None) and obfuscated (bcf,
cff, sub and split) binaries (§5.1). For both SymLM and NFRE, we
observe the performance degradation when obfuscation is applied
to binaries. For example, the F1 scores of SymLM and NFRE drop
by 6.1% and 17.5%, respectively, when bcf is applied. However,
SymLM is more robust to obfuscations than NFRE. For example,
the worst F1 score of SymLM is 0.726 in sub binaries, which is
much better than the minimum F1 score (0.445 in cff binaries) of
NFRE. Moreover, the average performance degradation of SymLM
is 5.7%, which is much smaller than NFRE (18.6%). We believe that

https://github.com/tech-srl/Nero

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

0 20 40 60
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

F1
 S

co
re

w/ Pretrained Model
w/o Pretrained Model

(a) Pretrained Model

0 10 20 30 40 50
Epochs

0.1

0.2

0.3

0.4

0.5

0.6

F1
 S

co
re

w/ Context
w/o Context

(b) Calling Context

Figure 8: Effectiveness of Pretrained Model and Calling Con-

text

Table 5: F1 Scores of SymLM and NFRE on Obfuscation (OBF)

Test Binaries. None indicates obfuscations are not applied.

OBF SymLM NFRE

None 0.806 0.595
bcf 0.757 (-6.1%) 0.491 (-17.5%)
cff 0.768 (-4.7%) 0.445 (-25.2%)
sub 0.726 (-9.9%) 0.505 (-15.2%)
split 0.788 (-2.2%) 0.496 (-16.6%)

the performance difference shown in Table 5 is reasonable because
SymLM can learn function semantics, which will not change when
obfuscations are applied.

RQ3 Answer: SymLM has the better generalizability and obfus-
cation resistance than the state-of-the-art works. For example,
SymLM outperforms NERO by 200.0%, 461.9%, 295.5% in preci-
sion, recall and F1 score on unknown test binaries and it has
157% better F1 score than NFRE on obfuscated binaries.

5.5 RQ4: Ablation Study

To evaluate the effectiveness of SymLM’s components, we perform
a set of ablation studies in this section.

Pretrained Model. To understand how the pretrained model can
help SymLM learn function semantics, we compare its performance
trained with and without the pretrained model. Specifically, we
evaluate and compare the performance when SymLM is (1) with the
pretrained model, and (2) with the same microtrace-based model
architecture (Figure 2) but randomly initialized model weights.
Figure 8a presents the F1 scores of SymLM on the same test set after
each training epoch. We observe that the pretrained model can
significantly improve SymLM’s performance after several training
epochs, e.g., 52.7%, 33.6%, 25.1%, and 20.2% improvement in the first
5, 10, 15, and 20 epochs on average F1 score. Moreover, after being
trained with more epochs, SymLM with and without the pretrained
weights both converge to the stable performance, but SymLM with
the pretrained model still outperforms SymLM without it.

Calling Context Modeling. We also study how our calling con-
text modeling method can help improve SymLM’s performance
in a similar way. That is, we evaluate SymLM trained with and
without considering calling context and report results in Figure 8b.
The figure clearly shows the effectiveness of calling context on
improve SymLM’s optimal performance. For example, after SymLM
achieves stable performance (after 45 epochs), the average F1 scores

0 5 10 15 20
Epochs

0

10

20

30

40

50

60

F1
 S

co
re CLS

Mean
CLS+Mean
Ours (top-1)
Ours (top-3)
Ours (top-5)
Ours (top-7)
Ours (top-9)

Figure 9: SymLM with Different Pooling Schemes

x64 x86 mips arm
Architecture

0.00

0.01

0.02

0.03

0.04

0.05

0.06

OO
V

Ra
tio

w/o Preprocessing
w/ Preprocessing

(a) OOVWord Mitigation

x64 x86 mips arm
Architecture

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

w/o Preprocessing & CodeWordNet
w/ Preprocessing & CodeWordNet

(b) Performance Improvement

Figure 10: Effectiveness of Preprocessing and CodeWordNet

on Mitigating OOVWords and Performance Improvement

of SymLM with and without context information are 0.596 and
0.643, which means learning calling context improves SymLM’s
performance by 7.9%. The effectiveness of calling context supports
our observation: the calling context is an important component of
function semantics, and fusing context information into function
semantics indeed helps predict function names.

Internal Function Embedding Pooling. The internal function
embedding pooling scheme is introduced to address the anisotropic
issue in function token embeddings (§4.1). To verify its effec-
tiveness, we compare SymLM with different pooling schemes,
including (1) only using the [CLS] token embedding, (2) only using
the mean of token embeddings (Mean), (3) concatenating both
[CLS] token and the mean of all token embeddings ([CLS]+Mean),
and (4) our proposed pooling scheme. For our pooling scheme, we
also evaluate the parameter 𝑘 of Equation 4 to demonstrate how
it affects SymLM’s performance. Figure 9 presents the evaluation
results of SymLM with different pooling schemes in each epoch.
It clearly shows the better performance of our proposed scheme
compared to the baseline schemes (1-3). For example, the worst
F1 score achieved by our scheme (𝑘 = 1) is better than those of
(1) [CLS], (2) Mean and (3) [CLS]+Mean schemes by 35.4%, 36.2%,
and 18.6% on average, respectively. Moreover, among the baseline
schemes (1-3), the [CLS] + Mean scheme achieves a better F1 score
than the others, which means that both the [CLS] token and the
mean of all token embeddings can only represent partial function
semantics. We also find that increasing the parameter 𝑘 can boost
SymLM’s performance till the upper bound, i.e., the maximum F1
scores are observed when 𝑘 = 7.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

Table 6: Performance of MLP and LSTM as Prediction Head

Model Precision Recall F1-score

MLP 0.497 0.567 0.530

LSTM 0.464 0.362 0.406

Function Name Preprocessing and CodeWordNet. To validate
the performance contributions of our function name preprocessing
approaches, we first study the out-of-vocabulary (OOV) word ratios
in test sets when function names are processed with and without
our proposed preprocessing approaches. Specifically, for SymLM
without preprocessing, we only tokenize function names into indi-
vidual lower-case words based on our observed naming conventions
(§4.2). We calculate the OOV ratio by the proportion of function
name words of test sets that are not presented in the vocabulary of
training sets. Figure 10a presents the OOV ratios in both settings
among different architectures. Overall, the OOVword ratios are dra-
matically reduced from 4.14% to 0.90% across all architectures when
our preprocessing approaches are enabled. In particular, the OOV
ratio drops from 5.51% to 1.14% on MIPS binaries, which means
79.3% of the OOV words are mitigated. To further understand how
our function name preprocessing approaches and the CodeWordNet
module can help improve the performance of SymLM, we evaluate
SymLM with and without them. Figure 10b presents the evalua-
tion results on binaries across different architectures, which clearly
demonstrates the effectiveness of our preprocessing approaches
and the CodeWordNet module, such as they improve SymLM’s F1
score by 16.7% on the MIPS binaries.

Decoder Model. The decoder model is to map function semantics
encodings into names. For this, we also evaluate how our MLP de-
coder compares to the sequential model, which is commonly used
in our baselines, as prediction head. Specifically, we compare the
MLP model with the LSTM model [43], which was used as decoder
for NFRE. We follow two steps to get the optimal training and infer-
ence results for fair comparisons while the LSTM model is used as
SymLM’s decoder. First, we enable “professor forcing” [58] that uses
the ground truth from a prior time step as input in model training.
Second, we use beam search [89] to get the optimal LSTM model
prediction results, which generates function name words with con-
sidering the optimal probability of the activate candidates in the
beam. Table 6 presents our evaluation results of SymLM with the
MLP and LSTM decoders respectively, in which MLP outperforms
LSTM by 7.1%, 55.8% and 30.5% on precision, recall and F1 score.

RQ4 Answer: SymLM’s components can improve its perfor-
mance on function name prediction. For example, our proposed
preprocessing approaches and the CodeWordNet module can
improve the F1 score of SymLM by 16.7% in MIPS binaries.

6 CASE STUDY

6.1 Qualitative Evaluation

To gain more insights of SymLM, we perform a qualitative study of
the predicted names. Table 7 presents some examples of incorrect
predictions. The first two columns are the ground-truth function
names before and after preprocessing, and the third column shows
the predicted function namewords, in which the correctly predicted

Table 7: Prediction Errors

Ground Truth

Original Preprocessed Prediction

logprintf log printf printf
c_isascii c is ascii is ascii
bi_init bi init init

overwrite_string overwrite string string

quote_mem quota mem quote arg mem
find_non_slash find non slash find non slash u
hash_string hash string hash string csgre

equality_comparator equality comparator compare
do_exit do exit exit

1 uint32_t read(uint32_t ulPin){
2 ...
3 if (pin == NC) uVar3 = 0;
4 else {
5 uVar2 = read_value(pin);
6 uVar3 = (uint32_t)uVar2;
7 if (uVar4 != 0xc) {
8 if ((uint) uVar4 < 0xc)
9 return (uint)(uVar2 >> (0xcU - uVar4 & 0xff));
10 return uVar3 << (uVar4 - 0xcU & 0xff);
11 }
12 }
13 return uVar3;
14 }

Figure 11: The prediction result of the Gateway [2] firmware

function which have been shown in Figure 1.

ones are underlined. We observe three categories of prediction
errors: (i) our predictions miss some ground truth words, such as
log for {log, printf}; (ii) our predictions include other words that
are not in the ground truth, e.g., the predicted word arg is not in the
ground truth {quote, mem}; and (iii) our predictions have the same
semantic meanings as the ground truth but different words, e.g.,
compare and {equality, comparator}. By studying the errors, we
find that some error predictions have captured the essential function
semantics of the ground truth, while the calculated performance is
not good, e.g., the F1 score of our prediction compare is 0 but it has
the same meaning as its ground truth. That is, although the overall
F1 score of SymLM is only 0.655 (§5.2), its real performance may be
better than the reported number.

6.2 Firmware Analysis

To further examine the use case of SymLM, we study how it can be
used to annotate the function in firmware. To collect test firmware
binaries, we first investigate the open-source firmware datasets
of existing firmware analysis works [36, 98]. Next, we identify
and collect 8 32-bit ARM firmware images used by P2IM [36]
from its Github12. Since the binaries are not stripped, we are able
to collect the ground truth function names. From the binaries,
we successfully obtain 1,061 functions by our binary parser
(§4.1). Next, we preprocess the ground truth with our proposed
approaches (§4.2). To predict the function names of the firmware
binaries, we reuse SymLM that is trained on our own ARM binary

12https://github.com/RiS3-Lab/p2im-real_firmware/tree/master/binary

https://github.com/RiS3-Lab/p2im-real_firmware/tree/master/binary

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

dataset and the corresponding vocabulary. After preprocessing, we
observe that 18.2% of the function name words do not appear in our
ARM dataset vocabulary. By manual investigations, we find that
most of OOV words are IoT or firmware specific terms, such as HAL,
NVIC, and MPU. Since our own ARM datasets do not contain any
firmware images, it is reasonable to observe the high OOV ratio.

To mimic real-world deployment scenarios where binaries are
usually stripped, we predict function names without using any de-
bug symbols. With SymLM, we successfully obtain partially correct
predicted names for 172 functions out of 1,061 functions. Figure 11
presents the prediction result of the Gateway [2] firmware function
that has been shown in Figure 1, where SymLM predicts names of
this function and its callee as {read} and {read, value}. We use the
common function name delimiter to combine {read, value} as the
predicted function name read_value with preserving the original
word order. According to the binary’s debug symbols, the ground
truth function names of these two functions are analogRead and
abc_read_value as shown in Figure 1. By studying the decompiled
code of these functions, we find that the word analog is a term
related to signal processing and abc is related to the devices that
use the firmware. And both words are the OOV words for SymLM.
Since SymLM was not trained on the firmware images, we think it
is reasonable to miss these two OOVwords in the prediction results.
And this example shows that SymLM is able to predict the function
names that preserve key function semantics.

7 DISCUSSION

This section discusses the limitations of our work and future direc-
tions. We consider the following cases that can bias our evaluation
results, and addressing them can all be interesting future works.

Dataset Size. We only train and evaluate SymLM with binaries
compiled from 27 open-source projects. A larger-scale study
that includes more binaries from the other sources, e.g., Linux
kernel, may further improve SymLM’s performance, though it has
shown the better generalizability than prior works, as presented
in §5.4. Moreover, generalizability evaluations can be performed
in different ways, e.g., cross optimizations, cross architectures, and
cross unseen projects, while we focus on cross unseen projects in
this paper. We believe that evaluating the generalizability in other
settings can be interesting future studies.

Obfuscation. While we have evaluated SymLM against several
compiler-based obfuscations, we do not consider other types of
obfuscations such as encryption and packing [45]. We treat them as
an orthogonal problem and any advancement in handling them [18]
is complementary to our approach.

Operating System. We focus only on Linux binaries in this paper.
However, programs for other OSs can have the different calling
conventions, in which SymLM’s calling context semantics encoding
module may fail to handle the effect of function calls.

Noise in Ground Truth. While we have attempted to address the
ambiguous function name issues, the problem is not fully resolved,
due to the limitations [80] of the word embedding algorithms used
in SymLM. Moreover, we only consider the semantic similarity at
the word level, but do not consider similar phrases with multiple
words. We leave addressing these problems in our future research.

8 RELATEDWORKS

While we have discussed many related works in §2, in this section,
we review other additional related works.

Function Name Prediction. Function name prediction is a
challenging task for both source and binary code. For source code,
there are many research efforts to predict function names for name
inconsistency checking and recommendations [9, 51, 60, 64, 70].
For example, Nguyen et al. [70] propose an abstractive function
summarization model to check name consistency. Li et al. [60] intro-
duce a context-based representation learning method. Meanwhile,
the research community also treats it as a task of code summariza-
tion [11, 47, 61, 62, 96], where a brief description is generated from
source code. Allamanis et al. [11] propose a convolutional attention
model to describe the source code. Zhang et al. [96] present a
retrieval-based neural source code summarization method. How-
ever, binary code contains far less semantic information than source
code, making it hard to apply existing methods to inferring function
names of stripped binaries. As discussed in §2.2, SymLM differs
from these prior works by learning the function execution behavior
through context-sensitive and execution-aware code embeddings.

Machine Learning for Reverse Engineering. Recently, machine
learning has been widely used in many binary reverse engineer-
ing tasks, including function similarity detection [31, 32, 66, 77],
type inference [10, 75], variable name recovery [13, 22], value-set
analysis [40], and disassembling [14, 37, 68, 76, 94]. For example,
Asm2vec [31] and DeepBinDiff [32] use unsupervised learning
methods to learn binary code representations. Marcelli et al. [66]
evaluate the start-of-the-art learning-based binary function simi-
larity works on two benchmarks. DIRTY [22] infers variable names
and types with a transformer-based model. VarBERT [13] recovers
the variable names with a BERT model. DeepDi [94] uses a rela-
tional graph model to accelerate the disassembly task. XDA [76]
leverages transfer learning for accurate and robust disassembly.
Although these works have achieved dramatic performance in their
own tasks, none of them can predict binary function names.

9 CONCLUSION

We have presented SymLM, a novel neural architecture for predict-
ing binary function names by learning context-sensitive behavior-
aware code embeddings. We designed a novel semantics fusing
encoder module to model function execution behavior semantics,
CodeWordNet to encode function name meanings, and proprocess-
ing approaches to solve the OOV problems. Our evaluation results
showed that SymLM is up to 35.0% more accurate than state-of-
the-art tools, while demonstrating its generalizability, obfuscation
resistance, component effectiveness and potential usability.

ACKNOWLEDGMENTS

We thank Han Gao and Guoqiang Chen for helping us evaluate
NFRE. We also thank the anonymous reviewers for their insightful
comments. This research was supported in part by ARO award
W911NF2110081, DARPA award N6600120C4020, and NSF awards
1834215 and 2112471, as well as a research gift from Amazon. Any
opinions, findings, conclusions, or suggestions expressed are the
authors’ and not necessarily those of the sponsors.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin

REFERENCES

[1] “Coreutils - gnu core utilities,” https://www.gnu.org/software/coreutils/, accessed:
2022-04-14.

[2] “Gateway,” https://github.com/RiS3-Lab/p2im-real_firmware/blob/master/
binary/Gateway, accessed: 2022-04-26.

[3] “Gnu binutilss,” https://www.gnu.org/software/binutils/, accessed: 2022-04-14.
[4] “Hikari,” https://github.com/HikariObfuscator/Hikari#hikari, accessed: 2022-03-

14.
[5] “Ida pro,” https://hex-rays.com/ida-pro/, accessed: 2022-04-14.
[6] “Linux system call table,” https://chromium.googlesource.com/chromiumos/docs/

+/master/constants/syscalls.md, accessed: 2022-04-14.
[7] “Options that control optimization,” https://gcc.gnu.org/onlinedocs/gcc/

Optimize-Options.html, accessed: 2022-08-29.
[8] “usbutils,” https://github.com/gregkh/usbutils, accessed: 2022-04-11.
[9] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accurate method

and class names,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, 2015, pp. 38–49.

[10] M. Allamanis, E. T. Barr, S. Ducousso, and Z. Gao, “Typilus: Neural type hints,”
in Proceedings of the 41st acm sigplan conference on programming language design
and implementation, 2020, pp. 91–105.

[11] M. Allamanis, H. Peng, and C. Sutton, “A convolutional attention network for
extreme summarization of source code,” in International conference on machine
learning. PMLR, 2016, pp. 2091–2100.

[12] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed
representations of code,” Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, pp. 1–29, 2019.

[13] P. Banerjee, K. K. Pal, F. Wang, and C. Baral, “Variable name recovery in decom-
piled binary code using constrained masked language modeling,” arXiv preprint
arXiv:2103.12801, 2021.

[14] E. Bauman, Z. Lin, and K. Hamlen, “Superset disassembly: Statically rewriting
x86 binaries without heuristics,” in Proceedings of the 25th Annual Network and
Distributed System Security Symposium (NDSS’18), San Diego, CA, February 2018.

[15] K. Beck, Implementation patterns. Pearson Education, 2007.
[16] G. Beniamini, S. Gingichashvili, A. K. Orbach, and D. G. Feitelson, “Meaningful

identifier names: the case of single-letter variables,” in 2017 IEEE/ACM 25th
International Conference on Program Comprehension (ICPC). IEEE, 2017, pp.
45–54.

[17] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing
text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[18] T. Blazytko, M. Contag, C. Aschermann, and T. Holz, “Syntia: Synthesizing the
semantics of obfuscated code,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 643–659.

[19] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the association for computational linguistics,
vol. 5, pp. 135–146, 2017.

[20] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary Code Extraction
and Interface Identification for Security Applications,” in Proceedings of the Net-
work and Distributed System Security Symposium, San Diego, CA, USA, February
2010.

[21] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho, and H. B. K. Tan, “Bingo:
Cross-architecture cross-os binary search,” in Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, 2016,
pp. 678–689.

[22] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues, G. Neubig, and B. Vasilescu,
“Augmenting decompiler output with learned variable names and types,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 4327–4343.

[23] S. Chen, Z. Lin, and Y. Zhang, “SelectiveTaint: Efficient data flow tracking with
static binary rewriting,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 1665–1682.

[24] X. Chen, C. Chen, D. Zhang, and Z. Xing, “Sethesaurus: Wordnet in software
engineering,” IEEE Transactions on Software Engineering, vol. 47, no. 9, pp. 1960–
1979, 2019.

[25] K. Chowdhary, “Natural language processing,” Fundamentals of artificial intelli-
gence, pp. 603–649, 2020.

[26] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke, “A
systematic survey of program comprehension through dynamic analysis,” IEEE
Transactions on Software Engineering, vol. 35, no. 5, pp. 684–702, 2009.

[27] Y. David, U. Alon, and E. Yahav, “Neural reverse engineering of stripped binaries
using augmented control flow graphs,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–28, 2020.

[28] Derek Anderson and Scott Randal, “Word ninja,” https://github.com/keredson/
wordninja, accessed: 2022-02-26.

[29] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[30] Devopedia, “Naming conventions,” https://devopedia.org/naming-conventions,
accessed: 2022-02-15.

[31] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static representa-
tion robustness for binary clone search against code obfuscation and compiler
optimization,” in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 472–489.

[32] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-wide code
representations for binary diffing,” in Network and Distributed System Security
Symposium, 2020.

[33] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, “Mining source code to
automatically split identifiers for software analysis,” in 2009 6th IEEE International
Working Conference on Mining Software Repositories. IEEE, 2009, pp. 71–80.

[34] A. Farghaly and K. Shaalan, “Arabic natural language processing: Challenges and
solutions,” ACM Transactions on Asian Language Information Processing (TALIP),
vol. 8, no. 4, pp. 1–22, 2009.

[35] D. Feitelson, A. Mizrahi, N. Noy, A. B. Shabat, O. Eliyahu, and R. Sheffer, “How
developers choose names,” IEEE Transactions on Software Engineering, 2020.

[36] B. Feng, A. Mera, and L. Lu, “{P2IM}: Scalable and hardware-independent
firmware testing via automatic peripheral interface modeling,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 1237–1254.

[37] A. Flores-Montoya and E. Schulte, “Datalog disassembly,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 1075–1092.

[38] H. Gao, S. Cheng, Y. Xue, and W. Zhang, “A lightweight framework for function
name reassignment based on large-scale stripped binaries,” in Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis,
2021, pp. 607–619.

[39] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the unknown
words,” arXiv preprint arXiv:1603.08148, 2016.

[40] W. Guo, D. Mu, X. Xing, M. Du, and D. Song, “{DEEPVSA}: Facilitating value-set
analysis with deep learning for postmortem program analysis,” in 28th USENIX
Security Symposium (USENIX Security 19), 2019, pp. 1787–1804.

[41] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin: Predicting
debug information in stripped binaries,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 1667–1680.

[42] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the naturalness of
software,” Communications of the ACM, vol. 59, no. 5, pp. 122–131, 2016.

[43] S. Hochreiter and J. Schmidhuber, “Long short-termmemory,”Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[44] J. Hofmeister, J. Siegmund, and D. V. Holt, “Shorter identifier names take longer
to comprehend,” in 2017 IEEE 24th International conference on software analysis,
evolution and reengineering (SANER). IEEE, 2017, pp. 217–227.

[45] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie, S. Hyrynsalmi, and
V. Leppänen, “Diversification and obfuscation techniques for software security:
A systematic literature review,” Information and Software Technology, vol. 104, pp.
72–93, 2018.

[46] E. W. Høst and B. M. Østvold, “Debugging method names,” in European Conference
on Object-Oriented Programming. Springer, 2009, pp. 294–317.

[47] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment generation,” in 2018
IEEE/ACM 26th International Conference on Program Comprehension (ICPC). IEEE,
2018, pp. 200–20 010.

[48] J. Huang, D. Tang, W. Zhong, S. Lu, L. Shou, M. Gong, D. Jiang, and N. Duan,
“Whiteningbert: An easy unsupervised sentence embedding approach,” arXiv
preprint arXiv:2104.01767, 2021.

[49] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, “CodeSearch-
Net challenge: Evaluating the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[50] Jeff Burt, “How ai can help reverse-engineer malware: Predicting function names
of code,” https://www.theregister.com/2022/03/26/machine_learning_malware/,
accessed: 2022-04-26.

[51] L. Jiang, H. Liu, and H. Jiang, “Machine learning based automated method name
recommendation: How far are we,” in Proceedings of the 34th ACM/IEEE Interna-
tional Conference on Automated Software Engineering (ASE’19). IEEE CS, 2019.

[52] Y. Jiang, H. Liu, and L. Zhang, “Semantic relation based expansion of abbrevia-
tions,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 131–141.

[53] D. S. Katz, J. Ruchti, and E. Schulte, “Using recurrent neural networks for de-
compilation,” in 2018 IEEE 25th International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 2018, pp. 346–356.

[54] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: State
of the art, current trends and challenges,” arXiv preprint arXiv:1708.05148, 2017.

[55] T. Kudo, “Subword regularization: Improving neural network translation models
with multiple subword candidates,” arXiv preprint arXiv:1804.10959, 2018.

[56] T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing,” arXiv preprint
arXiv:1808.06226, 2018.

[57] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig, and
B. Vasilescu, “Dire: A neural approach to decompiled identifier naming,” in 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 628–639.

https://www.gnu.org/software/coreutils/
https://github.com/RiS3-Lab/p2im-real_firmware/blob/master/binary/Gateway
https://github.com/RiS3-Lab/p2im-real_firmware/blob/master/binary/Gateway
https://www.gnu.org/software/binutils/
https://github.com/HikariObfuscator/Hikari#hikari
https://hex-rays.com/ida-pro/
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://github.com/gregkh/usbutils
https://github.com/keredson/wordninja
https://github.com/keredson/wordninja
https://devopedia.org/naming-conventions
https://www.theregister.com/2022/03/26/machine_learning_malware/

SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[58] A. M. Lamb, A. G. ALIAS PARTH GOYAL, Y. Zhang, S. Zhang, A. C. Courville, and
Y. Bengio, “Professor forcing: A new algorithm for training recurrent networks,”
Advances in neural information processing systems, vol. 29, 2016.

[59] B. Li, H. Zhou, J. He, M. Wang, Y. Yang, and L. Li, “On the sentence embeddings
from pre-trained language models,” arXiv preprint arXiv:2011.05864, 2020.

[60] Y. Li, S. Wang, and T. N. Nguyen, “A context-based automated approach for
method name consistency checking and suggestion,” in IEEE/ACM 43rd Interna-
tional Conference on Software Engineering (ICSE). IEEE, 2021, pp. 574–586.

[61] Y. Liang and K. Zhu, “Automatic generation of text descriptive comments for code
blocks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32,
no. 1, 2018.

[62] C. Lin, Z. Ouyang, J. Zhuang, J. Chen, H. Li, and R. Wu, “Improving code sum-
marization with block-wise abstract syntax tree splitting,” in 2021 IEEE/ACM
29th International Conference on Program Comprehension (ICPC). IEEE, 2021, pp.
184–195.

[63] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures
from binary execution,” in Proceedings of the 17th Annual Network and Distributed
System Security Symposium (NDSS’10), San Diego, CA, February 2010.

[64] K. Liu, D. Kim, T. F. Bissyandé, T. Kim, K. Kim, A. Koyuncu, S. Kim, and Y. Le Traon,
“Learning to spot and refactor inconsistent method names,” in 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE). IEEE, 2019, pp.
1–12.

[65] Z. Liu and S. Wang, “How far we have come: testing decompilation correctness of
c decompilers,” in Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2020, pp. 475–487.

[66] A. Marcelli, M. Graziano, X. Ugarte-Pedrero, Y. Fratantonio, M. Mansouri, and
D. Balzarotti, “How machine learning is solving the binary function similarity
problem,” in USENIX 2022, 31st USENIX Security Symposium, 10-12 August 2022,
Boston, MA, USA, Usenix, Ed., Boston, 2022.

[67] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[68] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin, “Probabilistic disassem-
bly,” in Proceedings of the 41st International Conference on Software Engineering,
ser. ICSE’19, Montreal, Quebec, Canada, 2019, pp. 1187–1198.

[69] National Security Agency, “Ghidra,” https://ghidra-sre.org/, accessed: 2022-04-21.
[70] S. Nguyen, H. Phan, T. Le, and T. N. Nguyen, “Suggesting natural method names

to check name consistencies,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, 2020, pp. 1372–1384.

[71] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and
M. Auli, “fairseq: A fast, extensible toolkit for sequence modeling,” arXiv preprint
arXiv:1904.01038, 2019.

[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
2019.

[73] J. Patrick-Evans, L. Cavallaro, and J. Kinder, “Probabilistic naming of functions
in stripped binaries,” in Annual Computer Security Applications Conference, 2020,
pp. 373–385.

[74] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow integrity through
binary hardening,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2015, pp. 144–164.

[75] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao, D. Williams-King, V. Ummadisetty,
J. Yang, B. Ray, and S. Jana, “Stateformer: fine-grained type recovery from binaries
using generative state modeling,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2021, pp. 690–702.

[76] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “Xda: Accurate, robust
disassembly with transfer learning,” arXiv preprint arXiv:2010.00770, 2020.

[77] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray, “Trex: Learning execution semantics
from micro-traces for binary similarity,” arXiv preprint arXiv:2012.08680, 2020.

[78] Pytorch developers, “Embedding,” https://pytorch.org/docs/stable/generated/
torch.nn.Embedding.html, accessed: 2022-03-24.

[79] R. Rehurek and P. Sojka, “Gensim–python framework for vector space modelling,”
NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, vol. 3,
no. 2, 2011.

[80] S. Ruder, I. Vulić, and A. Søgaard, “A survey of cross-lingual word embedding
models,” Journal of Artificial Intelligence Research, vol. 65, pp. 569–631, 2019.

[81] G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing faults in c and java
source code: Abbreviated vs. full-word identifier names,” ACM Transactions on
Software Engineering and Methodology (TOSEM), vol. 26, no. 2, pp. 1–43, 2017.

[82] S. Seeha, I. Bilan, L. M. Sanchez, J. Huber, M. Matuschek, and H. Schütze, “Thailm-
cut: Unsupervised pretraining for thai word segmentation,” in Proceedings of The
12th Language Resources and Evaluation Conference, 2020, pp. 6947–6957.

[83] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words
with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[84] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware analysis us-
ing conditional code obfuscation.” in Network and Distributed System Security
Symposium. Citeseer, 2008.

[85] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.”
in Network and Distributed System Security Symposium, vol. 1, 2015, pp. 1–1.

[86] J. Siegmund, “Program comprehension: Past, present, and future,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 5. IEEE, 2016, pp. 13–20.

[87] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich part-of-speech
tagging with a cyclic dependency network,” in Proceedings of the 2003 Human
Language Technology Conference of the North American Chapter of the Association
for Computational Linguistics, 2003, pp. 252–259.

[88] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of
machine learning research, vol. 9, no. 11, 2008.

[89] A. K. Vijayakumar, M. Cogswell, R. R. Selvaraju, Q. Sun, S. Lee, D. Crandall, and
D. Batra, “Diverse beam search: Decoding diverse solutions from neural sequence
models,” arXiv preprint arXiv:1610.02424, 2016.

[90] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding for program
repair,” arXiv preprint arXiv:1711.07163, 2017.

[91] K. Wang and Z. Su, “Blended, precise semantic program embeddings,” in Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2020, pp. 121–134.

[92] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma, “Malware anal-
ysis of imaged binary samples by convolutional neural network with attention
mechanism,” in Proceedings of the Eighth ACM Conference on Data and Application
Security and Privacy, 2018, pp. 127–134.

[93] J. Yang, C. Fu, X.-Y. Liu, H. Yin, and P. Zhou, “Codee: A tensor embedding scheme
for binary code search,” IEEE Transactions on Software Engineering, 2021.

[94] S. Yu, Y. Qu, X. Hu, and H. Yin, “Deepdi: Learning a relational graph convolutional
network model on instructions for fast and accurate disassembly,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2709–2725.

[95] J. Zeng, Y. Fu, K. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation-resilient binary
code reuse through trace-oriented programming,” in Proceedings of the 20th ACM
Conference on Computer and Communications Security (CCS’13), Berlin, Germany,
November 2013.

[96] J. Zhang, X. Wang, H. Zhang, H. Sun, and X. Liu, “Retrieval-based neural source
code summarization,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1385–1397.

[97] C. Zhao and S. Sahni, “String correction using the damerau-levenshtein distance,”
BMC bioinformatics, vol. 20, no. 11, pp. 1–28, 2019.

[98] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic firmware emulation through
invalidity-guided knowledge inference,” in USENIX Security Symposium, 2021, pp.
2007–2024.

https://ghidra-sre.org/
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Problem Definition
	2.2 Challenges
	2.3 Prior Efforts and Our Motivations
	2.4 Microtrace-Based Pretraining

	3 Overview
	4 Detailed Design
	4.1 Function Semantics Encoding
	4.2 Function Name Preprocessing
	4.3 Function Name Semantics Modeling
	4.4 Training and Inference

	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: Overall Effectiveness
	5.3 RQ2: Baseline Comparison
	5.4 RQ3: Generalizability and Obfuscation Resistance
	5.5 RQ4: Ablation Study

	6 Case Study
	6.1 Qualitative Evaluation
	6.2 Firmware Analysis

	7 Discussion
	8 Related Works
	9 Conclusion
	Acknowledgments
	References

