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Overview
Function name prediction in stripped binaries is a very 
useful but extremely challenging task. For this,
• We design a function symbol name prediction and 

binary language modeling framework, SymLM.
• We propose a novel neural architecture to jointly learn 

function semantics preserved in execution behavior
and calling context.

• We evaluate SymLM with 1.4M binary functions and 
show that it outperforms the state-of-the-art works by 
up to 35% in F1 score with better generalizability and 
obfuscation resistance.

• We show SymLM’s component effectiveness and 
practical use cases with IoT firmware images.

Background and Motivation
1. Commercial software (e.g., IoT firmware, browsers, and 
pdf readers) is usually closed-source and shipped in 
stripped binaries, whose semantic information (e.g., 
function names) is missing. Predicting function names 
helps reverse engineers understand code semantics, 
identify malware/vulnerabilities, etc.
2. Predicting function names is very challenging, because:
a. Semantic similar code can appear differently, e.g.,

b. Function names are noisy, e.g., the probability that 2 
developers give the same name for a function is 6.9%.

c. Modeling calling context is necessary, e.g.,

Our key observations: predicting function names requires 
(1) learning semantics from execution behavior, (2) 
resolving NLP issues, and (3) modeling calling context.

Methodology

Step 1: SymLM generates embeddings by 
fusing semantics of calling context and 
function instructions. It encodes internal 
functions by a pretrained model and external 
functions by an embedding lookup table. 

Step 2: SymLM resolves NLP issues by 
tokenizing names into words, segmenting
words by a unigram language model, and 
embedding words with CodeWordNet
(consisting of 3 word embedding models).

Step 3: SymLM updates weights of the 
pretrained model, embedding lookup layer, 
and MLP decoder in training, and predicts 
names of stripped binaries that semantically 
match ground truth with CodeWordNet.
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Fig. 3: System Workflow with Three Major Steps

Fig. 4: The Pretrained Model Used for 
Transformer Encoding. The pretraining tasks 
force the model to learn execution behavior.

1. Evaluation Setup: we built our datasets with 27 open-source projects, compiled into 16K 
binaries and 1.4 M functions in 4 architectures, 4 optimizations, and 4 obfuscation options.
2. Overall Performance: 0.634 precision, 0.677 recall, and 0.655 F1 score on average.
3. Comparison to the state-of-the-art works:

4. Generalizability Evaluation: 5. Obfuscation Resistance:

Evaluation and Results Use Case Study
We show the practical use case of SymLM with 
8 32-bit ARM IoT firmware images with 18% 
unseen IoT-specific name words (e.g., analog).
Result: 172/1062 names correctly predicted.

Scan the QR code or visit 
https://github.com/OSUSecLab/
SymLM to find our code.

Fig. 1: Semantically Similar but Syntactically Different Code

Fig. 2: Partial Semantics Preserved in Its Callees

Fig. 5: Baseline Comparison

Fig. 6: Generalizability Comparison

Tab. 1: Performance (F1 Score) on 
Obfuscated (OBF) Binaries

Fig. 7 Example Prediction. The ground truth 
names are analogRead and abc_read_value.
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