
SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive 
Execution-Aware Code Embeddings

Xin Jin
The Ohio State University

jin.967@osu.edu

Overview
Function name prediction in stripped binaries is a very 
useful but extremely challenging task. For this,
• We design a function symbol name prediction and 

binary language modeling framework, SymLM.
• We propose a novel neural architecture to jointly learn 

function semantics preserved in execution behavior
and calling context.

• We evaluate SymLM with 1.4M binary functions and 
show that it outperforms the state-of-the-art works by 
up to 35% in F1 score with better generalizability and 
obfuscation resistance.

• We show SymLM’s component effectiveness and 
practical use cases with IoT firmware images.

Background and Motivation
1. Commercial software (e.g., IoT firmware, browsers, and 
pdf readers) is usually closed-source and shipped in 
stripped binaries, whose semantic information (e.g., 
function names) is missing. Predicting function names 
helps reverse engineers understand code semantics, 
identify malware/vulnerabilities, etc.
2. Predicting function names is very challenging, because:
a. Semantic similar code can appear differently, e.g.,

b. Function names are noisy, e.g., the probability that 2 
developers give the same name for a function is 6.9%.

c. Modeling calling context is necessary, e.g.,

Our key observations: predicting function names requires 
(1) learning semantics from execution behavior, (2) 
resolving NLP issues, and (3) modeling calling context.

Methodology

Step 1: SymLM generates embeddings by 
fusing semantics of calling context and 
function instructions. It encodes internal 
functions by a pretrained model and external 
functions by an embedding lookup table. 

Step 2: SymLM resolves NLP issues by 
tokenizing names into words, segmenting
words by a unigram language model, and 
embedding words with CodeWordNet
(consisting of 3 word embedding models).

Step 3: SymLM updates weights of the 
pretrained model, embedding lookup layer, 
and MLP decoder in training, and predicts 
names of stripped binaries that semantically 
match ground truth with CodeWordNet.

Kexin Pei
Columbia University

kpei@cs.columbia.edu

Jun Yeon Won
The Ohio State University

won.126@osu.edu

Zhiqiang Lin
The Ohio State University
zlin@cse.ohio-state.edu

Fig. 3: System Workflow with Three Major Steps

Fig. 4: The Pretrained Model Used for 
Transformer Encoding. The pretraining tasks 
force the model to learn execution behavior.

1. Evaluation Setup: we built our datasets with 27 open-source projects, compiled into 16K 
binaries and 1.4 M functions in 4 architectures, 4 optimizations, and 4 obfuscation options.
2. Overall Performance: 0.634 precision, 0.677 recall, and 0.655 F1 score on average.
3. Comparison to the state-of-the-art works:

4. Generalizability Evaluation: 5. Obfuscation Resistance:

Evaluation and Results Use Case Study
We show the practical use case of SymLM with 
8 32-bit ARM IoT firmware images with 18% 
unseen IoT-specific name words (e.g., analog).
Result: 172/1062 names correctly predicted.

Scan the QR code or visit 
https://github.com/OSUSecLab/
SymLM to find our code.

Fig. 1: Semantically Similar but Syntactically Different Code

Fig. 2: Partial Semantics Preserved in Its Callees

Fig. 5: Baseline Comparison

Fig. 6: Generalizability Comparison

Tab. 1: Performance (F1 Score) on 
Obfuscated (OBF) Binaries

Fig. 7 Example Prediction. The ground truth 
names are analogRead and abc_read_value.

https://github.com/OSUSecLab/SymLM

	Slide Number 1

