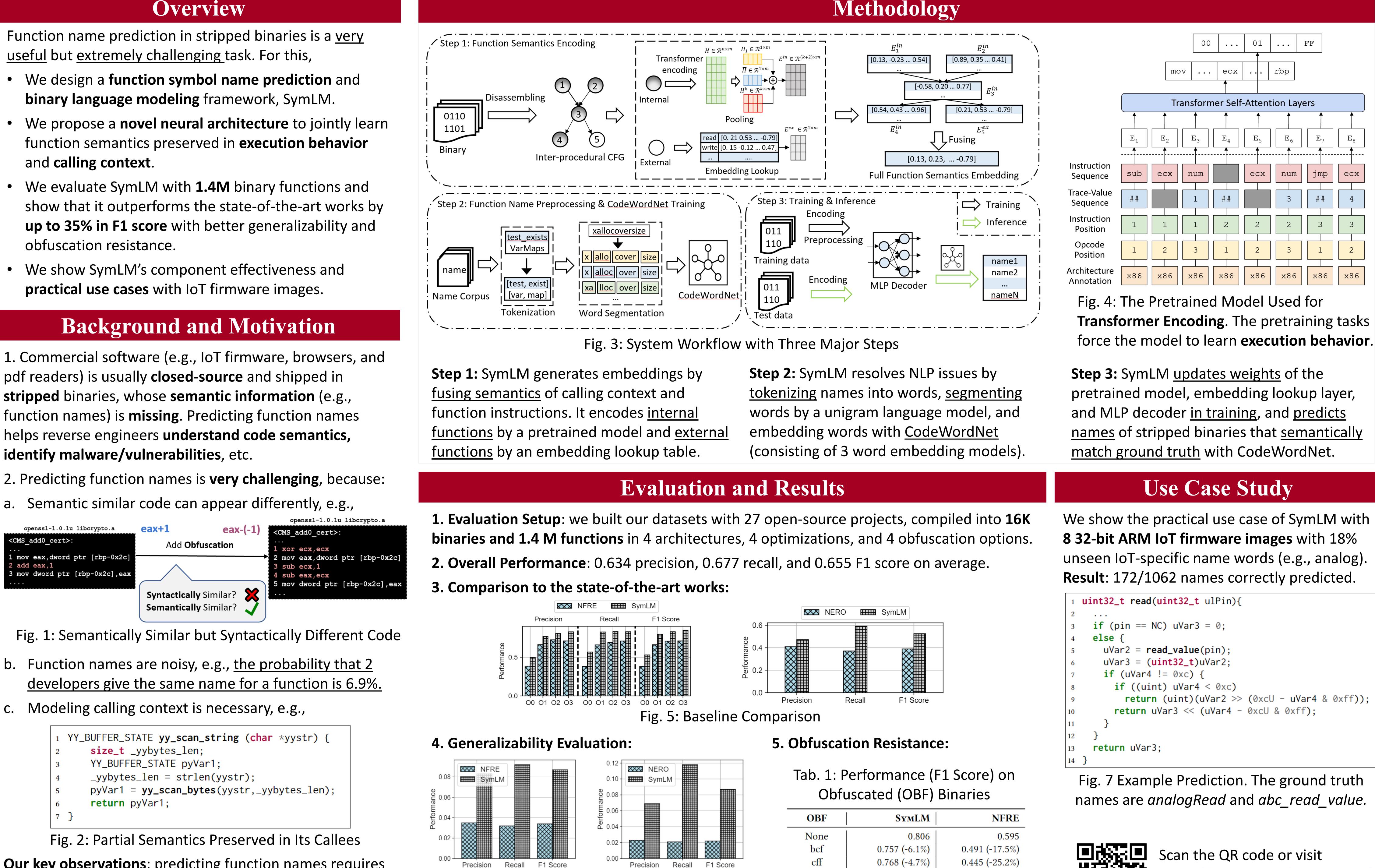
SymLM: Predicting Function Names in Stripped Binaries via Context-Sensitive Execution-Aware Code Embeddings



Overview

<u>useful</u> but <u>extremely challenging</u> task. For this,

- **binary language modeling** framework, SymLM.
- and calling context.
- obfuscation resistance.
- practical use cases with IoT firmware images.

pdf readers) is usually **closed-source** and shipped in helps reverse engineers understand code semantics, identify malware/vulnerabilities, etc.

1	YY_BUFFER_STATE <pre>yy_scan_string (char *yystr) {</pre>		
2	<pre>size_t _yybytes_len;</pre>		
3	YY_BUFFER_STATE pyVar1;		
4	_yybytes_len = strlen(yystr);		
5	<pre>pyVar1 = yy_scan_bytes(yystr,_yybytes_len);</pre>		
6	return pyVar1;		
7	}		

Our key observations: predicting function names requires (1) learning semantics from execution behavior, (2) resolving NLP issues, and (3) modeling calling context.

Xin Jin The Ohio State University jin.967@osu.edu

Kexin Pei Columbia University kpei@cs.columbia.edu

(b) SYMLM v.s. NERO (a) SYMLM v.s. NFRE Fig. 6: Generalizability Comparison

Jun Yeon Won The Ohio State University won.126@osu.edu

Zhiqiang Lin The Ohio State University zlin@cse.ohio-state.edu

OBF	SymLM	NFRE
None	0.806	0.595
bcf	0.757 (-6.1%)	0.491 (-17.5%)
cff	0.768 (-4.7%)	0.445 (-25.2%)
sub	0.726 (-9.9%)	0.505 (-15.2%)
split	0.788 (-2.2%)	0.496 (-16.6%)

We show the practical use case of SymLM with

https://github.com/OSUSecLab/ <u>SymLM</u> to find our code.